When do we plan agreement?

Evidence from agreement attraction and unaccusatives

888 Defense, April 15, 2025

Utku Turk University of Maryland, College Park

why should you even care?

- our syntactic knowledge guides what we say and how we speak

- what do humans compute vs. how do humans compute
 - \succ when do humans compute

- we are in a place to streamline the question of when

Planning

octopus below spoon swim

The octopus below the spoon is swimming.

Kempen & Hoenkamp 1987, Bock 1989, Ferreira 2003, Momma et al. 2016, Momma & Ferreira 2019

Kempen & Hoenkamp 1987, Bock 1989, Ferreira 2003, Momma et al. 2016, Momma & Ferreira 2019

The octopus below the spoon is boiling.

syntax can license advance planning of the verb prior to the other intervening elements

Kempen & Hoenkamp 1987, Bock 1989, Ferreira 2003, Momma et al. 2016, Momma & Ferreira 2019

Planning

Features

The octopus below the spoon is boiling.

Levelt 1989, Levelt et al. 1999, Schriefers et al. 2002, Faroqi-Shah 2023, Slevc 2023

eager agreement

The octopus below the spoon is boiling.

The octopus below the spoon is boiling.

eager agreement

lazy agreement

Bock & Miller 1991, Wagers et al. 2009, Kandel & Phillips 2022

Bock & Miller 1991, Wagers et al. 2009, Kandel & Phillips 2022

speakers systematically produce erroneous agreement especially with nearby number-mismatching noun

Bock & Miller 1991, Wagers et al. 2009, Kandel & Phillips 2022

speakers systematically produce erroneous agreement

Bock & Miller 1991, Wagers et al. 2009, Kandel & Phillips 2022

octopus below spoons is swim

Planning

Features

Experiments

Exp1: ePWI experiment (N=74)

- Similar to Momma & Ferreira (2019)
 - 12 entities and 24 objects
 - 12 unergative and 12 unaccusative scenes
 - Relatedness (2: related x unrelated)
- Unlike Momma & Ferreira (2019)
 - Attractor number (2: PL x SG)
 - 6 more entities
 - 12 additional objects
 - 12 additional control scenes
- 144 trials, repeated measures, PCIbex+Prolific

People are good at agreement

- Why are they suddenly good at agreement?
 - Attractors are not in the "controller" response set
 - Visual cue makes the head more salient
 - Non-restrictive attractors
 - Uncertainty associated with verb retrieval

Roelofs 2001, Nozari & Omaki 2022, Kim & Xiang 2024

Exp2: picture description experiment materials (N=54+40)

- What changed?
 - Only 6 entities, used as head and the attractor
 - No visual cue directly on the head
 - Attractors have communicative intent
 - No controls: less verbs to remember

Materials

- 6 Entities
- 12 unergative & 12 unaccusative scenes
- 4 Conditions
 - Attractor number (2: PL x SG)
 - Head number (2: PL x SG)
- Latin square design
- 144 (scene-entity pairs) in 4 conditions put in 2 lists
- 18 scenes per number condition per participant
- PClbex + SONA

Comparable attraction across verb types

Pause likelihood as a timing index

Pause likelihood as a timing index (even in Exp1)

Take home messages

- ✓ Attraction "outputs" are comparable in both verb types
 - \rightarrow Attraction is late
- ✓ Pause likelihood reflects the agreement computation
- ✓ Subjecthood and modifier status matter for attraction

Planning

Features

Experiments

Onset t

What about real time measures?

What about real time measures in Exp2?

✓ People are slower to start uttering plural heads

Wumber of the attractor only matters for unaccusatives

Bow do we reconcile "Late Attraction", but "Early Agreement"?

Attraction as a linearization problem

Self-monitoring + accessing the word form

Evidence from pause likelihood

What did we find?

- ✓ Unaccusative specific number effect on the onset timing
- ✓ Verb-insensitive number effect on pause likelihood
- ✓ Verb-insensitive attraction effects

What can we speculate?

- ➤ Morpho-syntactic diacritic specification (agreement) is early
- \succ Access to morpho-phonological form is late
- > Attraction effects are due to linearization mistakes in production

Where to go from here?

- Exp to verify early planning without semantic interference

- Testing attraction in a language where number is more mechanistic than English

- Exp to check different agreements
 - Inherent features and agreement, i.e. gender in Dutch/Czech
 - Fusional unacc-unerg and number marking in Spanish/Laz

References

- Bock, J. K. (1986). Syntactic persistence in language production. Cognitive psychology, 18(3), 355-387.
- Bock, K., & Miller, C. A. (1991). Broken agreement. Cognitive psychology, 23(1), 45-93.
- Eberhard, K. M., Cutting, J. C., & Bock, K. (2005). Making syntax of sense: Number agreement in sentence production. Psychological review, 112(3), 531.
- Faroqi-Shah, Y. (2023). A reconceptualization of sentence production in post-stroke agrammatic aphasia: the synergistic processing bottleneck model. Frontiers in language sciences, 2, 1118739.
- Ferreira, V. S. (2003). The persistence of optional complementizer production: Why saying "that" is not saying "that" at all. Journal of Memory and Language, 48(2), 379-398.
- Kandel, M., & Phillips, C. (2022). Number attraction in verb and anaphor production. Journal of Memory and Language, 127, 104370.
- Kempen, G., & Hoenkamp, E. (1987). An incremental procedural grammar for sentence formulation. Cognitive science, 11(2), 201–258.
- Kim, S. J., & Xiang, M. (2024). Incremental Discourse-Update Constrains Number Agreement Attraction Effect. Cognitive Science, 48(9), e13497. Levelt, W. J. (1993). Speaking: From intention to articulation. MIT press.
- Levelt, W. J., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. Behavioral and brain sciences, 22(1), 1–38.
- Momma, S., Slevc, L. R., & Phillips, C. (2016). The timing of verb selection in Japanese sentence production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 813.
- Momma, S., & Ferreira, V. S. (2019). Beyond linear order: The role of argument structure in speaking. Cognitive psychology, 114, 101228.
- Nozari, N., & Omaki, A. (2022). An investigation of the dependency of subject-verb agreement on inhibitory control processes in sentence production. Roelofs, A. (2001). Set size and repetition matter: Comment on Caramazza and Costa (2000). Cognition, 80(3), 283-290.
- Schriefers, H., Jescheniak, J. D., & Hantsch, A. (2002). Determiner selection in noun phrase production. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(5), 941.
- Slevc, L. R. (2023). Grammatical encoding. In Language production (pp. 4-31). Routledge.
- Wagers, M. W., Lau, E. F., & Phillips, C. (2009). Agreement attraction in comprehension: Representations and processes. Journal of memory and language, 61(2), 206–237.

Model Specifications: Pause + disfluency + attraction

Parameter	Specification	
Family	bernoulli("probit")	
Formula	error ~ 1 + verb_type * sem_type * dist_num + (1 + verb_type * sem_type * dist_num subject) + (1 + verb_type * sem_type * dist_num head)	
Intercept	Student's t(3, 0, 2.5)	
Prior		
Coefficient	Normal(0,1)	
Prior		
σ Prior	Cauchy $+(0,1)$	
(Random		
Effects)		
ρ	LKJ(2)	
Prior(Correlat	ions)	
Chains	12000 (2000 warmup)	

Model Specifications: onset + preverbal

Parameter	Specification
Family	exgaussian()
Formula	duration ~ 1 + verb_type * dist_num *
	<pre>sem_type + l_pres + (1 + verb_type * dist_num</pre>
	<pre>* sem_type subject_id) + (1 head)</pre>
Intercept Prior	Normal(1000, 50) / Normal(800,20) for preverbal
Coefficient Prior	Normal(50, 10)
σ Prior (Random Effects)	Cauchy ⁺ (50, 10)
σ Prior (Residual)	Cauchy ⁺ (50, 10)
Chains	12000 (2000 warmup)
Backend	cmdstanr
Cores	8

Why exGaussian, but no tail parametrization?

- Momma & Ferreira (2019): inverse Gaussian, only mean is parametrized, tail difference is due to mean variance
- Roeser et al. (2024): mixture (two gaussians) distribution, only variance parameterization, mean is thought as "decision time" and was not shifted

My assumption:

- it is about the trials that starts late: so definitely mean parameterization
- The distribution in a mixture though, so definitely mean variance should not derive tail, tail should be independent

Model Specifications: contrasts

Predictors	+0.5 Unaccusative Related Plural	-0.5 Unergative Unrelated Singular
Verb-Type		
Semantic Relatedness		
Attractor Number		

Procedure: Exp1

- Distractors come 150ms before
- Prompted to utter sentence with pictures
- 5 seconds to utter sentence
- Repeated measures
 - Participants saw all conditions (144 trials)
- PClbex (unlike Momma & Ferreira 2019)
- ~38% excluded

Exclusions in Exp1

Parameters

Full Picture of Attraction in Exp1

Attraction Model in Exp1 when the attractor is plural

Attraction Model in Exp1 with unaccusatives

Attraction Model in Exp1 with unergatives

Pause Likelihood results in Exp1

Pause Likelihood model in Exp1

Onset Results in Exp1(nested)

Onset Results in Exp1

Onset Latency model in Exp1 with semantically related distractors

Onset Latency model in Exp1 with semantically unrelated distractors

Preverbal results in Exp 1(nested)

Preverbal results in Exp 1

Preverbal model in Exp 1

Parameters

Why we needed Exp2? DDM Answer

Why Unaccusatives were slower? Not due to "identifiability"

Procedure: Exp2

- 500ms cross
- 1500 ms picture explorations
- 4000 milliseconds of "square" = recording
- ~28% exclusion for attraction
- ~39% exclusion for timing

Exclusions in Exp2

Parameters

Attraction model in Exp2 with singular heads

Attraction model in Exp2

Pause likelihood model in Exp2 with singular heads

Pause likelihood model in Exp2 with plural heads

Pause likelihood model in Exp2

Parameters

Onset model in Exp2 with plural heads

Onset model in Exp2 with singular heads

Preverbal results in Exp2

Preverbal model in Exp2

Parameters

Codability and early planning in Exp2

We fit a preliminary model to our onset latency data using this entropy-based codability measure as a predictor, including an interaction term with verb type. While the model revealed strong evidence for a main positive effect of codability ($\hat{\beta} = 31.44$; CI = [-3.98; 67.06]; $P(\beta > 0) = .96$), we did not find strong evidence for its interaction with verb type ($\hat{\beta} = 28.52$; CI = [-39.93; 97.46]; $P(\beta > 0) = .79$). However, in more complex models, we observed a weak effect of a three-way interaction between

PLANNING AGREEMENT

158

codability, verb type, and attractor number ($\hat{\beta} = 98.19$; CI = [-86.92; 282.38]; $P(\beta > 0) = .85$).